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ABSTRACT

Several methods of increasing the speed and simplicity of the computation of off-axis transmission holograms are
presented, with applications to the real-time display of holographic images. A bipolar intensity approach enables a
linear summation of interference fringes, a factor of two speed increase, and the elimination of image noise caused by
object self-interference. An order of magnitude speed increase is obtained through the use of precomputed look-up
tables containing a large array of elemental interference patterns corresponding to point source contributions from
each of the possible locations in image space. Results achieved using a data-parallel supercomputer to compute
horizontal-parallax-only holographic patterns containing 6 megasamples indicate that an image comprised of 10,000
points with arbitrary brightness (grayscale) can be computed in under one second.

INTRODUCTION

The real-time display of holographic images has recently become a reality. The MIT Spatial Imaging Group
has reported the successful generation of small three-dimensional (3D) computer-generated holographic images
reconstructed in real time using a display system based on acousto-optic modulation of light[1, 2, 3]. In any
real-time display system, a computer-generated hologram (CGH) must be computed as quickly as possible in order
to provide for dynamic and interactive images. However, numerical synthesis of a holographic interference pattern
demands an enormous amount of computation, making rapid (~1 second) generation of holograms of even limited
size impossible with conventional computers.

A holographic fringe pattern is computed by numerically simulating the physical phenomena of light diffraction
and interference. In general, light diffracts from a three-dimensional object to the hologram plane. Since the
analytical expressions that model diffractive propagation through free space resemble the Fourier transform integral,
computation of holographic interference patterns often utilizes the Fast Fourier Transform (FFT) algorithm[4].
Though relatively fast, this approach is useful only for images possessing discrete depth surfaces[5, 6], and becomes
slow when applied to images that extend throughout an image volume.

A more general approach is a ray-tracing method in which the contribution from each object point source is
computed at each point in the hologram plane. This method can produce arbitrary three-dimensional (3D) images,
but is slow, since it requires one calculation per image point per hologram sample. As presented in this paper,
the application of several methods of reducing computation complexity leads to computation times as short as one
second on a data-parallel-processing supercomputer. First, a “bipolar intensity” representation of the holographic
interference pattern is developed and shown to eliminate unwanted image artifacts and simplify calculations without
loss of image quality or generality. Second, a look-up table approach is described and shown to provide further
speed increase, though image resolution and quantization noise become issues. Finally, exemplary computation
times are presented.



HOLOGRAPHIC IMAGING SPECIFICS

This paper focuses on the computation of off-axis transmission holograms possessing horizontal parallax only
(HPO), a quality of the “rainbow” or Benton hologram. It is possible to represent an HPO hologram with a
vertically stacked array of one-dimensional holographic lines[6, 7]. Consider an HPO hologram made optically
using a reference beam with a horizontal angle of incidence. Spatial frequencies are large in the horizontal direction
(~ 1000 Ip/mm) and increase with the reference beam angle. However, by limiting the view zone to only a single
vertical view, vertical spatial frequencies are low (~ 10 Ip/mm). It is evident that elimination of vertical parallax
provides a factor of 100 (or greater) reduction of CGH size. During reconstruction of this hologram, diffraction
occurs predominantly in the horizontal direction. It is appropriate to represent this holographic pattern with a
relatively low vertical sample spacing (or “pitch”), roughly that used in a two-dimensional (2D) imaging system.
In the horizontal dimension, however, the sampling pitch must be very high in order to accurately represent the
holographic information. For each horizontal plane (“scan-plane”), the associated horizontal line of the hologram
diffracts light to form image points in that plane only. Therefore, the 2D holographic pattern representing an HPO
3D image can be thought of as a stack of one-dimensional (1D) holograms or “holo-lines”. The goal of this paper,
then, is to compute these 1D holographic lines as quickly as possible.
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Figure 1: General geometry for HPO CGH.

The images to be generated are approximated as a collection of self-luminous points of light located in =, y, and =
locations. Each point possesses a magnitude and a phase. The square of the magnitude is proportional to the desired
brightness of an image point, and the phase is relative to the reference beam. Each point radiates a fan-shaped
wavefront that is a horizontal slice of an anisotropic spherical wave. It is important to be able to assign a range of
propagation angles for each point of image light in order to limit the spatial frequencies contained in the holographic
fringe pattern. At one extreme, “light” used to compute the CGH must have an angle of incidence that is greater
than that of the reference beam to prevent overlapping real and virtual reconstructed images (image aliasing). At
the other extreme, the total angle subtended by the incident reference and object beams cannot be so large as to give
rise to spatial frequencies that cannot be adequately represented by the discretized numerical representation. If the
horizontal sampling pitch is physical distance d, then the maximum spatial frequency (f,...-) that can be represented
is 1/2d, according to the Nyquist Sampling Theorem. Higher spatial frequencies cause aliasing, thus destroying
image quality. Anti-aliasing is therefore accomplished by limiting the minimum and maximum angles of incidence
of object light. In addition to anti-aliasing, the range of direction of object light propagation is used for the purposes
of image occlusion and advanced image lighting models[8], resulting in a more realistic looking image.

The information content of a CGH must be reduced to a size and format that can be manipulated by existing
computers. Consider a typical CGH pattern: it is composed of a large but finite 2D array of numbers representing



the intensity of the computed total wavefront. The horizontal sampling pitch puts an upper limit on the maximum
angle of diffraction of the CGH and consequently the maximum range of image viewing angles. Reducing the range
of viewing angles reduces the required horizontal sampling rate and therefore the amount of data (space-bandwidth
product) in the CGH. Furthermore, by reducing the size of the hologram (and therefore of the image), the data
content of the CGH is as low as a few megabytes. These size reductions are an undesirable trade-off used only when
no further information reduction is possible.

Quantization is also an important consideration. Each sample must represent an arbitrary physical value, but
digital electronics commonly limit the number of quantization levels available when manipulating data. For
example, the output device used in the current MIT system is a framebuffer capable of storing 6 megasamples,
each represented by one byte (8 bits), giving the output data 256 possible quantized values. Therefore, a computed
holographic interference pattern must be normalized to fit within this range. It is then quantized, increasing image
noise due to the loss of accuracy. Quantization is also important when considering computation speeds, since less
accurate representations of values (fewer bits) can be used to increase speed, but also sacrifice image quality.

COMPUTATION USING POINT SOURCE SUMMATION

In general, the physics of optical holography are as follows. The object light and the reference light are incident
at the plane of the hologram. Each beam is represented with a complex time-harmonic electric field vector, Fo
and F'r. Itis assumed that both are mutually coherent sources of monochromatic light. For this analysis, the units
of an electric field amplitude are normalized so that the square of its magnitude corresponds to optical intensity;
the polarizations are assumed identical and for simplicity are not specified. The object beam F is generally a
superposition of light scattered from locations throughout the object volume. The total time-harmonic electric field
incident upon the hologram is £ + Fr, which represents the interference of the total object light and the reference
light. The resulting intensity pattern is

Irorar = |Eol? + |Er|* + 2Re{ Eo E},} (1)

and is a real physical light distribution comprised of three components. The second term is the reference beam
intensity and represents an essentially constant or “DC” bias which increases the value of the intensity uniformly
over the hologram. In computational holography, it can be left out, since normalization will subtract any DC bias
present in the total holographic pattern. The first term is the object self-interference: a spatially varying pattern
that is generated when interference occurs between light scattered from two or more object locations. During
image reconstruction, this component of the holographic pattern is unnecessary and often produces unwanted image
artifacts. In optical holography, a common solution is to spatially separate the self-interference artifacts from the
desired image by increasing the reference beam angle to at least three times the angle subtended by the object.
However, in computational holography, a large reference beam angle is a luxury that one does not have. Therefore,
the obvious solution is to exclude this object self-interference term during computation. Finally, it is the third term
that contains all of the necessary and useful holographic information, and is referred to as /.

The numerical computation of a holographic pattern is now examined, beginning with the simple physics of
point-source light propagation. The hologram is positioned at the = = 0 plane, and has horizontal and vertical axes
of = and y respectively. Each object point emits light from position (z,, y,, 2,). The fan-shaped object sources
expose a limited width of a particular holographic line (“holo-line”). For the HPO CGH considered henceforth, an
object point contributes only on the holo-line that is at the same vertical position (y, = ). (To be more accurate,
one must account for vertical foreshortening, absent due to the elimination of vertical parallax. Depending on
specific display geometries, a more general image-point selection criterion is to include on holo-line y each point
With y, + 1(2p — Zuiew) = ¥, Where z,;.,, is the intended view distance from the hologram, and it = y/z ey IS



the slope of the path of light from the holo-line to the viewer.) Throughout the remainder of this discussion, the
computation of a single holo-line is analyzed, and a full 2D CGH is computed simply by generating an array of
holo-lines for each value of y. Only the z-dependence of £p and Er and other physical quantities need to be
considered in computing a single holo-line.

For the purposes of computation, each object point is treated as an angularly truncated two-dimensional point
source. Each has a complex amplitude of A, = a, exp(:¢,), where the real-valued magnitude is «, and the real-
valued relative phase of point source number p is ¢,. Within the region of contribution, the phase of the object
wavefront, ®,(z ), is approximated as a spherical wave[9] centered at the point source location:

@, (x) = kry(e) + ¢, where ry(z) = [(x —z,)2 + 22)2

where r,(z) is the oblique distance to a location on the holo-line and is a function of z. The wavenumber is
k = 2m /X, where A is the free-space wavelength of the light. The time-harmonic representation of the total object
field for a single holo-line is

NpornTs

Eo(z)= 3 ap(x)r; (z) expli®y(x)] (2)

p=1

where NpornTs is the number of object points contributing to this particular y-valued holo-line. The added
dependence of a, on « facilitates anti-aliasing and occlusion simply by not including contributions outside of
specific ranges of x. Finally, to avoid singularities, it is assumed that the magnitude of z,, is never less than some
small amount, e.g., 10A.

The reference beam FEr is a point source at some specific location (z z, yr = v, zr) With a horizontal angle of
incidence 6 = arctan(zpr/zr) and curvature in the = dimension only, i.e., collimated in the y dimension. The
time-harmonic representation of the reference beam field at any holo-line is

ER(x) = ar expli®@p(z)] (3)

where ar is the magnitude (assumed constant versus z) of the reference wave at the hologram plane and
1

®p(z) = k[(z — zr)? + #3]7 . Note that all magnitudes and phases are real quantities.

BIPOLAR INTENSITY

The third term of Equation 1, called (), contains all of the information needed to reconstruct the image in
a given horizontal plane. Note that it is real-valued; it represents the combined intensity variations (“fringes™)
resulting from each object point interfering with the reference beam. Since it contains negative values as well as
non-negative values, it is a “bipolar intensity” which exists physically only when superimposed on the first two bias
terms in Equation 1. Computationally, however, I =(z) can range both positive and negative since it is represented
numerically, and is later offset during normalization.

The bipolar interference pattern /(z) has the advantage of containing no object self-interference or bias com-
ponents, and is numerically simpler to compute. /() is further simplified:



NpornTs

Ip(z) =2Re{ [ Y ap(x)ry (z)exp{i®y(2)}] [ar exp{i®p(z)}]" }

p=1
NpornTs
= 2ag Z Re{ ap(z) rzjl(x) exp[iD,(z) — iPpr(2)] }
p=1
NpornTs
“2ap Y. ayfa)rH(e) cosly(a) — Bp(a)] @

p=1

The right-hand side of Equation 4 is simply a scaled sum of the real-valued cosinusoidal fringe pattern resulting
from the interference of point source p with the reference beam. Each of these constituent fringes is summed to
obtain the full bipolar fringe pattern.

The advantages of this approach are readily seen by comparison to computation of the full interference pattern
Itor ar(z) which requires keeping track of both the real and imaginary parts of the object light. Each point requires
a function call to both sine and cosine, and complex-value arithmetic must be used. In the bipolar intensity approach,
the real-valued cosinusoidal fringes need simply to be summed to achieve the desired interference pattern. Each
point requires only a single cosine function call. Therefore, a factor of two speed-up is expected.

A subtler advantage is revealed by considering numerical precision. The integer multiples of 27 spanned by
@, (=) must be calculated but are discarded when computing the cosine or the sine of the object light phase. Typically,
@, () is represented by a floating-point number composed of four 8-bit bytes possessing a precision of roughly 7
decimal digits. Values for @, () often exceed 107 and must therefore make use of double-precision floating point
representation, decreasing computation speed. In computing only the bipolar intensity component [ (2 ), ®r(z)
(and any arbitrary integer) is first subtracted from @, () before applying the cosine function, reducing the number
of required significant digits; thus, the important fractional phase information is adequately represented with a
single-precision floating-point expression.

After an intensity pattern has been computed, it must be normalized in order to satisfy the output device re-
quirements of the CGH display system. Since normalizing generally scales the entire pattern, the leading factor of
2 apr on the right-hand side of Equation 4 is hereafter excluded. The reference beam intensity (the square of ar)
is no longer meaningful. This makes physical sense when considering that in optical holography, the purpose of
choosing the ideal reference beam intensity ratio (relative to the object light) is to provide a sufficient DC offset and
scaling to the interference fringes in order to keep them within the range of sensitivity of the recording medium.
Computationally, offset and scaling are provided automatically during normalization. With the factor of 2 a i set
arbitrarily to unity, (and substituting the definition of @ ,(z)) Equation 4 becomes

NpoInTs
Ip(z) = Y. ap(x)r, (z) cos[kry(z) — @r(z) + @] (5)
p=1

which is hereafter called the bipolar fringe method of CGH computation. No reference beam ratio needs to be
specified during computation, and bias buildup is not an issue. Compare this bipolar intensity method to the physical
process occurring in some photorefractive crystals[10] (e.g. lithium niobate), in which uniform (“DC”) intensity is
not recorded due to the material’s negligible response to intensity patterns with low spatial frequencies. Researchers
exploit this absence of bias build-up in order to sequentially expose multiple holographic intensity patterns.



PRECOMPUTED ELEMENTAL FRINGES: THE LOOK-UP TABLE APPROACH

Continuing with the bipolar intensity summation approach, further improvements in computation speed are gained
through the use of precomputed look-up tables containing all possible elemental fringes. Consider a two-dimensional
display which requires no computation (other than normalization and perhaps logarithmic correction) in order to
display a two-dimensional image. This simple fact is due to the one-to-one correspondence between each image
element and each display element, both often referred to ambiguously as a “pixel”. To illuminate a particular image
pixel, simply display some non-zero value in the corresponding display pixel. In a three-dimensional holographic
display, this simple correspondence between each image element and each display element does not exist. In this
case, a 3D image element is a point of light in some (x, y, z) location with a brightness and relative phase. A
display element corresponds to a numerical sample of a line of a holographic pattern modulating a beam of light.
By determining how each possible image element relates to the display elements (holographic pattern), computation
is reduced to a minimum.

Specifically, it is possible to precompute the contributionsto / () of an image point of unity magnitude for each
possible value of (z,, z,). Since each holo-line is computed using the same E'r(x ), the precomputed tables are used
in the computation of each holo-line. Rather than having to compute the cosinusoidal fringe each time it are needed,
a large precomputed lookup table maps each (z,,z,) to the appropriate elemental fringe pattern contribution. To
define these tables, Equation 5 is expanded.

NpornTs

Ip(z) = Y {ay(x) cosd, 1, (x) cos[k ry(x) — Pr(x)] + ap(x) sing, r,*(x) sin@p(z) — kry(x)]} (6)
p=1

Other than the dependence of a,, on z, all spatial dependence of Equation 6 is in the following two expressions, used
to define the two look-up tables:

TABLE[z, X, Z;] = 77 X(x) cos[k ri(z) — ®r(z)]
TABLEs[z, X, Z;] = 7 }(2) sin[®p(z) — k()]

where 7;(z) = [(z — X;)? + ZZZ]%. For both of these tables, the first index is 2, which is already discretized due the
the sampled representation of the CGH. However, image point positions (z,, z,) are not explicitly discretized, and
must be rounded off to generate the X; and Z; source location indices. Before the tables are generated, the X; and
7; resolutions must be chosen in order to discretize the image volume. Since the acuity of the human visual system
is limited, it is possible to chose resolutions that do not visibly degrade the image.

The first table looks like an array of cosinusoid-like fringes that have an approximately linear chirp in spatial
frequency with respect to z. The rate of chirp is a function of the point source depth z,, and the horizontal position
of the fringe is a function of z,. The second table is essentially the same but in quadrature to the first, i.e., with a
7 /2 phase difference, needed in order to represent any arbitrary point source phase. The dependence of a, on = due
to anti-aliasing is conveniently included in the two tables simply by leaving zeroes in all table locations in which
there is no contribution. It is then assumed that any further variation in @, will be dealt with during computation
time, leaving a,, independent of . Thus, (), expressed in terms of precomputed tables, is

NpoInTs
IF(x) = Z { (ap cos (bp) TABLEg[z, Xp, Zp] + (ap sin (bp) TABLEg|z, Xy, Zp] } @)

p=1



Computation for a given holo-line at vertical position ¥ is as follows:

e For every point with y, = y (i.e. on given scan-plane):

— Round off (z,, 2,) to [ X, Z,] to index the desired elemental fringe.
— For each z sample in I (2):

+ Scale TABLEc[x, X, Z,] by a, COS ¢,,.

+ Scale TABLEs[z, X, Z,] by a,, sin¢,.

+ Accumulate these scaled values in I(z).

After each holo-line is computed (at each value of ), then normalizing and output is performed depending on the
specific display system.

Computational Complexity

Computational complexity is dramatically reduced through the use of the two precomputed look-up tables.
For a single object point contributing to a particular hologram point, the amount of computation required is two
multiplications and two additions. In comparison, without the tables, computation involves a minimum of five
additions, five multiplications, one square-root, and one cosine function call. (That is, using the bipolar fringe
summation method and a precomputed ® (2 ) known at each «.) Full complex computation of /70714 (2) would
require still more computational steps, at least twice as many. Therefore, an order of magnitude of speedup is
expected through use of the precomputed tables. Notice that the factors used to scale the table values (see Equation
7) are simply the real and imaginary parts of each point amplitude.

For further simplification, consider the case where all object points are to have the same relative phase. Only
one table and half of the computation are needed, and an additional factor of two speed-up is obtained per point
per holo-point. (One table can actually provide two object phases that are differing by =.) In practical holographic
displays, arbitrary image point phase is often unnecessary since the individual image points may be non-overlapping,
even at densities that give the appearance of continuous curves or surfaces.

Look-up Table Compaction

The greatest drawback to the precomputed table method is the enormous size of the tables. Essentially, memory
requirements have been traded off against computational complexity. Consider the rather minimal dimensions of the
first generation MIT real-time display system. The image volume of roughly 40 mm on each side is viewed from a
distance of 600 mm. Using commonly accepted values for human visual acuity, as well as empirical tests performed
using the display itself, the image volume should be discretized into approximately 250 horizontal positions and
50 depth positions. To provide a range of viewing angles of about 16 degrees, a holo-line contains 32 kilosamples
(horizontal pitch of about one micron, wavelength of 632.8 nm). Assuming a standard four-byte representation, the
two tables require over 3.2 gigabytes of memory! (Note that use of the bipolar intensity approach eliminates the
additional necessity for the tables to contain both real and imaginary values and therefore reduces the table size by
one half.)

Since the tables need only to be computed once for a given image volume and resolution, the use of cheaper
less dynamic storage methods (e.g. PROM or EEPROM) may solve the size problem. However, hardware alterations
may not be practical in most cases. Since many of the table entries are zeroes due to anti-aliasing, table size can be
reduced by keeping track of the extent of the non-zero entries. However, in a data-parallel machine, this does not



help, since memory allocation is generally identical for all processors. Given a limited memory capacity, how can
the size of the two tables be reduced without reducing the speed of accessing the stored elemental fringe data? The
best solution is to reduce the number of bits used to store each value. A common 4-byte representation contains 32
bits or 232 quantization levels. This is clearly a waste of numerical precision since each value will be normalized
and quantized to fit into an output device possessing far fewer quantization levels. Let us assume that the output
device has 8-bit representation, as is commonly the case in high-resolution computer graphic display frame-buffers.
In this case, a precomputed fringe need not be stored using more than 8 bits of memory.

For many practical applications, two bits can sufficiently represent the precomputed fringes in each of the two
look-up tables. Consider the summation of many elemental fringes, summed in a manner that depends on specific
object information. On the average, many points contribute to a sample of / (), which must be scaled down during
normalization, effectively reducing the precision requirements of the look-up tables. For example, if a 32-bit integer
(a sample of an elemental fringe) is ultimately scaled down by 23° then its magnitude will span up to only two bits
in the output device. The optimum case is where the tables contain values that are quantized to the same number
of levels that they will occupy after being scaled down, re-quantized and written to the output device. Consider
again the MIT real-time display system. Typically, the number of object points contributing to a particular sample
of the hologram is at least 64 = 26. If two-bit tables are used and 64 fringe elements are summed, then 256 is the
maximum number of different values that this sample may contain, assuming an average point source amplitude of
unity. As long as the image is sufficiently complex, table entries need only a four-level (two-bit) quantized version
of the chirped cosinusoidal fringes.

A disadvantage to reducing the numerical precision of the elemental fringes is an increase in image noise.
Quantization causes light power to be diffracted into the undesirable higher diffraction orders. Some fraction of
the range of spatial frequencies that are intentionally computed diffract higher-order noise into the image volume.
For example, the third harmonics of the spatial frequencies ranging from zero to f,,.../3 diffract light into the
image volume. Higher odd orders contribute diminishingly smaller amounts. If all of these higher orders are taken
into account, then a signal-to-noise ratio (SNR) due to quantization can be calculated. Numerical analysis shows
that by simply rounding the cosinusoidal fringes in a standard fashion to four evenly spaced levels gives a SNR
of 148:1. However, by tailoring the levels coded by each bit and altering the thresholds during conversion from
floating-point representation, the SNR can be made as high as 243:1. Using only a binary one-bit representation
yields an unacceptably low SNR of 20:1.

Another obstacle is the inability of standard computers to deal with two-bit numbers during rapid computation
of a CGH. The solution is to use the bits stored in the two tables not as numerical values but instead as Boolean
representations of the particular table entry. Consider the one-table approach where ¢, = 0. During computation,
the two bits are indexed from TABLE¢[z, X, Z,] and then, if the low-order bit is one, 1/4 of the scale factor a,, is
accumulated into Iz (z). If the high-order bit is one, then 1/2 of the scale factor is accumulated into /(). Using
this conditional approach, no time is wasted converting the two-bit value into standard integer or floating-point
formats.

The real advantage of the two-bit method is that now the two tables can occupy as little as 1.6 gigabits of
memory, or the equivalent of 200 megabytes, rather than 3.2 gigabytes. In addition, the use of the tables as boolean
conditionals substitutes two additions for the two time-consuming multiplications. The computational complexity
is now only four additions per object point per holo-point, and only two if the one-table method is used. Additional
speed is expected.

Notice that the rp‘l(ac) term cannot be included in the two-bit look-up tables since it requires a more continuous
representation. However, this term can be approximated by zp‘l and used to prescale a,, resulting in a negligible
decrease in speed.



Reduction of Table Rank from Three to Two

The precomputed tables are data arrays of rank three, indexed by = (on the hologram) and by the discretized
values of z, and z, (in the image scan-plane). One way to reduce the size of the tables is to precompute values for
each A, = (z — z,) rather than for each = and each z,,. In this way, the tables are reduced to rank two. A simple
restriction on the discretization step of =, enables Equation 5 to be expressed as a function of A, and z,,, exclusively.

In Equation 5, r,(«) is a function of (z — z,,) = A, and z,, leaving only ®x(z) as an explicit function of z. This
must be manipulated into a function of A, . First, by restricting the reference beam to be a plane-wave, the reference
phase is simply ®r(z) = krz, where kr = k sinfr. The second restriction is that z,, be discretized by 27 /kRp,
making every possible value of k A, differ by exactly m2r for a given value of = , where m is some unimportant
integer value. Consider that when computing the cosine or sine of total phase, any integer multiple of 2 is ignored.
Therefore, ®r(z) can be expressed as ®r(z) = krx + m2r = kr A, = ®r(A,) for all discretized values of z,,.
Finally, Equation 5 can be expressed as a function of only two variables A, and z,,

N
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rla)= Y ap(@)r; M (Ar) coslk (A’ +2,°)2 — krAs + &)

p=1

and corresponding look-up tables of rank two can be used. The indices are A, and a discretized z,.

Essentially, the elemental fringe patterns can now be moved in the z-direction. That is, they are shift-invariant
in 2 for any X, equal to an integer multiple of £z A... Clearly, the first advantage is a reduction in size equal to at
least the number of discrete values of x, used in the rank-three tables (~ 100 or more). The second advantage is
that z,, is discretized in very small steps without increasing the size of the rank-two table. The horizontal image
discretization step 27/ k is on the order of ten microns. For further flexibility, this step can be any integer multiple
of 27 /kr. The only drawback to the rank-two tables approach is the requirement that the reference beam be a plane
wave. However, this is a common case, and is applicable to many display architectures. In general, this contraction
of rank is especially useful when implemented on a standard serial-processing computer.

Application to the Computation of Stereograms

For some applications, a stereogram[11] approach may be desirable when presenting three-dimensional images.
In general, a stereogram consists of a series of two-dimensional object views differing in horizontal point-of-view.
These views are presented to the viewer in the correct horizontal location, resulting in the depth cues of stereopsis
and (horizontal) motion parallax. The 2D perspective views are generally imaged at a particular depth position,
and are multiplexed by horizontal angle of view. A given holo-line in this case must contain a holographic pattern
that diffracts light to each of the horizontal locations on the image plane. The intensity from a particular horizontal
viewing angle should be the image intensity for the correct perspective view. This isaccomplished simply by making
the amplitude of the fringe contribution a step-wise z-function of the intensity of each image point from each of
the views. To facilitate rapid computation of stereogram-type CGHs, the precomputed tables are indexed by image
x-position and view-angle (rather than by «, and z,). Summation is performed as each of the perspective views is
read into the computer. Furthermore, the tables can be indexed by A, as described above, making the tables much
smaller. Many stereogram CGHs have been computed and displayed on the MIT real-time holographic display
system, producing realistic images computed utilizing sophisticated lighting and shading models and exhibiting
occlusion and specular reflections.



RESULTS

Using the methods of bipolar intensity summation and precomputed elemental fringe patterns, hologram compu-
tation has been implemented for use in the MIT real-time display system. A Connection Machine Model 2 employs
a data-parallel approach in order to perform real-time CGH computation. This means that each = location on the
hologram is assigned to one of 32k virtual processors. (The 16k physical processors are internally programmed to
imitate 32k “virtual” processors.) A Sun 4 workstation is used as a front-end for the CM2, and the parallel data
programming language C Paris is used to implement holographic computation.

The following table contains the computation times (time per image point) using different approaches. “Full
(complex) Irorar” is the common general case where Equations 1, 2 and 3 are used to compute fully I'ror4r.
By eliminating the unnecessary interference terms and simplifying to obtain Equation 5, the calculation of the
fringe pattern I is performed using the “Bipolar intensity” approach. The “Look-up tables” method employs two
precomputed elemental fringe tables, represented in the memory of the CM2 as two bits per sample. As each object
point is read from an input file, the position (x,, 2,) is used to index the two tables in each processor. A conditional
is performed on each of the four bits, and the appropriate fractions of either the real or imaginary parts of the object
point amplitude are accumulated into the register representing /(z). Since this is performed in parallel for all
32 kilosamples of Ix(x), rapid computation of images is possible. A “Single look-up table” is used when object
phase is not important.

Computation method CM2 Sun4

Full (complex) Itorar, | 2.180 ms | 943.4 ms
Bipolar intensity 1.135ms | 486.2 ms
Look-up tables 0.174ms | 39.0 ms
Single look-up table 0.084ms | 22.1ms

The time per point listed here is the amount of computation time required (on average) to accumulate the fringe
pattern contribution of a single object point source. These numbers were obtained by computing holograms of several
different testimages of varying complexity. The computationtime per point is simply the total execution time divided
by the number of points processed. Despite the different image complexities (from 100 to 50,000 points), the time per
point quotient remained within a 2% range; computation time scaled linearly with image complexity. For practical
purposes, additional procedures that are independent of object complexity must be performed, including normalizing
the computed holographic pattern and moving it into the frame-buffer. Therefore, a generally fixed overhead time
must be added when expressing the total time to compute and output the holographic pattern. For a six megabyte
holographic pattern, this time is approximately 0.4 seconds or less. For example, the actual time to compute a ten-
thousand-point image using the single look-up table approach is 10,000 x 0.084(ms) 4+ 0.4(sec) = 1.24 seconds,
or less.

For comparison, the different computational approaches were also implemented on a serial computer, a Sun 4
workstation. Though computation times are much longer, the relative speed-up afforded by the “Look-up tables”
approach is evident. While preserving full object phase generality, the look-up table approach is over 20 times faster
than the full complex approach.

As expected, the bipolar approach is roughly twice as fast as the traditional complex method of computation.
This is evident on both the parallel-data and serial machines. Moving to the look-up tables, the CM2 improves by
about a factor of 7, and the serial machine improved by a larger factor of 12. The CM2 actually has an array of
floating-point math accelerator chips which are no longer utilized in per point look-up table calculations. The serial
machine, lacking the math co-processing capabilities which would speed up the non-look-up table approaches gains
more from the use of the look-up tables. Finally, as expected, the use of a single table results in a speed-up of
approximately two on both machines.



It must also be noted that the holographic patterns computed by these three approaches are equivalent, with the
following exceptions. Use of the bipolar intensity eliminates object self-interference and DC terms, making the
CGH brighter and less noisy than when using the full complex method. The look-up table approach results in a
pattern that is identical to the bipolar intensity approach, with the addition of some quantization noise if two-bit
tables are used. However, for objects of sufficient complexity, this quantization noise is comparable to that of the
more straight-forward approaches, given the quantization of the output frame-buffer device used in the system.

In the current MIT display system, simple images generated from 3D computer graphics data-bases contain
only a few thousand points. Using the fastest look-up table computation method, images are computed at a rate of
over one frame per second. To demonstrate interactivity, the viewer can turn any of several dials (interfaced to the
computer) in order to translate the image in horizontal, vertical, and depth locations, to change its size, and to spin it
along different axes of rotation. In addition, a simple drawing program has been written in which the user can move
a 3D cursor to draw a 3D image that can also be manipulated.

CONCLUSION

Experimental results demonstrate that a horizontal-parallax-only off-axis transmission hologram can be computed
in times as low as one second. The overall speedup demonstrated here is remarkable. CGH computation that
traditionally would require several minutes or hours on a mainframe computer, is reduced to one second. The look-
up table approach, by eliminating the need for all mathematical functions other than simple addition, is especially
advantageous when only minimal computing power is available for CGH computation. Given adequate memory
space to hold the precomputed elemental fringes, it is possible to design a dedicated CGH computer that requires
no floating-point mathematics and uses only integer addition (and perhaps bit-shifting for normalization purposes).
Such a simple machine can be implemented in parallel, e.g. one computer per holo-line, in order to achieve real-time
CGH computation without the need for an expensive supercomputer.

Analytical simplification of the physical model of light interference made possible this increase in speed. These
concepts can be applied to other types of holograms. The bipolar intensity method is applicable to all types, including
full-parallax CGHs. The use of the bipolar intensity summation method, whether directly or through look-up tables,
eliminates object self-interference noise, eliminates the need to adjust a reference beam ratio, and produces an
optimally bright image by eliminating unnecessary DC intensity bias. The look-up table approach can be applied to
full-parallax holograms, although by requiring both = and y indices, precomputed tables (data-arrays of rank five,
reduced to to rank three using the method shown here) would require enormous amounts of memory space. In the
future, as computational power increases, the simplification of computation presented here will continue to provide
speed-up for any CGH application.
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