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Appendix C

3Computation of Synthetic Basis Fringes

This section describes two related methods for generating diffraction-specific basis

fringes: the iterative constraint method (discussed in the Background section) and a

novel simulated annealing approach. These numerical methods are necessitated by the

complicated set of spatial and spectral constraints on a given basis fringe. Spatially,

the basis fringe must represent a single hogel at a single location in the fringe pattern.

It must therefore have a finite width, and must possess homogeneous characteristics

across its width (i.e., a virtually constant amplitude). Spectrally, the basis fringe has

multiple often conflicting characteristics.

The spectrum of a hogel is divided into sampled increments of width∆f. Each basis

fringe is responsible for contributing energy in a particular portion of the spectrum and

in no others. This corresponds to diffracting light in a finite range of directions. If the

spectrum has a bandwidth of BW=0.5 cycles/sample and is divided into N regions of

width ∆f=0.5/N, then each basis fringe i must possess a spectrum that is non-zero in

the range [i∆f,(i+1)∆f] for i=[0,N-1]. The shape of the spectrum is a truncated sinc

function as required by the sampling theory to recover the continuous spectrum. Other

shapes – guassian, rectangular, triangular – were also used to determine their effects

on image quality. Each spectrum has a specific width.

An analytic solution to these many constraints is practically impossible. Attempts at

deriving closed-form analytical solutions leads to further complexity. More impor-

tantly, these analytic approach are mired in interference-based computation. They are

prone to the same problems associated with interference-based computation.

Several numerical methods can be applied to generate basis fringes. These numerical

methods produce a fringe that is synthesized from a set of constraints rather than from

interference-based analysis. Therefore, these numerically generated fringes are called
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syntheticfringes. The numerical methods that worked best for this thesis were the

method of iterative constraints, and a novel application of simulated annealing. Both

of these algorithms were implemented on the Connection Machine Model 2 with 16K

data-parallel processors.

C.1 Method of Iterative Constraints

As discussed in Section2.7 “Iterative Hologram Computation Methods”on page34, a

typical iterative constraint algorithm involves using the forward and inverse Fourier

transforms and alternately applying spatial and spectral constraints. The figure on the

next page illustrates this algorithm schematically and in a step by step description.
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2. Transform into the spatial frequency domain.

3. Apply the (spectral) constraints on .
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6. Iterate starting at step 2.

where:
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Algorithm for Method of Iterative Constraints
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As an example of the application of iterative constraints to the synthesis of basis

fringes, consider the case of a basis fringe that is to have spectral energy in a rectangu-

lar region ranging from 0.0 up to 0.5/8=0.0625 (cycles/sample). The spectral con-

straint on magnitude is that it be 1.0 within the region [0.0,0.0625] and 0.0 elsewhere.

The spatial constraint is that it have a uniform magnitude of 1.0. Phase is uncon-

strained in both the spatial and spectral domains. For a length of Nh = 256 samples,

computation begins with a randomly generated spatial phase and a uniform magnitude

of unity. After transforming into the spectral domain, the magnitude is forced to equal

the desired spectrum, namely 1.0 in the region [0.0,0.0625] and 0.0 elsewhere. After

inverse transforming into the spatial domain, the magnitude is forced to be uniform.

This cycle iterates. After 20 iterations, a reasonable solution to the constraints is gen-

erally obtained, after which very little changes. This example was run using an itera-

tive constraint algorithm implemented on the CM2. After 100 iterations, the resulting

real part of the spatial pattern is shown as the top basis fringe in the following figure:

At its right is its spectrum. Included are an additional seven basis fringes, each with a

spectrum that is rectangular with width∆f=0.5/8=0.0625, each non-zero in the range

[i∆f,(i+1)∆f] for i=[0,7], These basis fringes evenly divide the spectrum into eight

equal parts. Such a set of basis fringes was used to perform hogel-vector decoding for
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the parameters Nh = 256 samples and CR=32. For most cases, the basis fringes used

had a gaussian profile, with 1/e2 spectral full-width of∆f.

The advantage of the iterative constraint algorithm is that it can generate synthetic

basis fringes using a wide variety of constraints. It is fast, though speed is not impor-

tant in precomputation of basis fringes since these basis fringes need only to be com-

puted once and then integrated into diffraction-specific computation algorithms. The

more important issue is one of closeness to the desired constraints. Notice that in the

example of eight basis fringes shown in the previous figure, the spectra are not perfect

rectangles. The ripples and drop-outs in basis fringe spectra lead to speckle-like arti-

facts in the holographic images. The disadvantage is that this method sometimes stag-

nates at local minima in the error function48. The error function is the difference

between the desired spectral characteristics and those in the spectrum of the calculated

pattern. One solution was to introduce a small amount of noise into the spatial pattern

with each iteration. The amount of noise decreased with each iteration. Still, the syn-

thesized basis fringes were still lacking in spectral quality. The solution was to imple-

ment a simulated annealing algorithm.

C.2 Simulated Annealing

Simulated annealing47 is a numerical optimization algorithm used for a variety of

applications. Just as physical annealing (the process of slowly cooling a liquid into a

solid) seeks to decrease the global energy state of a system, simulated annealing seeks

to minimize the error between certain qualities of a numerical system and their tar-

geted constraints. To further the analogy, simulated annealing sometimes increases

error based on a probability function that resembles Boltzmann’s probability distribu-

tion:

(C3)Prob E( ) exp
E−

kT
( )∼
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which relates the probability of a system being in a particular energy stateE given that

its thermal energy iskT. As a physical system cools, it generally moves toward a lower

energy state. However, there is always a finite probability that it will move (tempo-

rarily) to a higher energy state. In simulated annealing, a random test change is made

to the numerical system. Let∆E be the difference between the system “error” with the

test change and the system without it. If the resulting change in error∆E is negative,

then the change is allowed. If∆E is positive, it may be kept or rejected, depending

probabilistically on EquationC3. The system always moves toward a potential

decrease in error, but does sometimes move toward a potentially higher error state.

This occasional addition of error prevents the system from stagnating at a local mini-

mum (as does the iterative constraints algorithm). The parameterkT must be chosen to

allow for occasional increase in error, and must be slowly cooled (reduced) as the sys-

tem converges to its targeted constraints.

A simulated annealing algorithm was implemented for this thesis on the CM2. The

process of randomly altering one sample of a basis function is slow. It is important to

begin the annealing with a good guess. Therefore, the basis fringe generated using the

method of iterative constraints was used as the initial guess (seed) for the simulated

annealing algorithm. The first step in the annealing algorithm is randomly to select a

sample of the spatial pattern and to change it, within the spatial constraints. After a test

change has been made, the spectral energy is calculated by applying a Fourier trans-

form. The error function after a given iteration was calculated as

(C4)

wherevc(fi) is the targeted spectral magnitude constraint andfi is thef location of sam-

ple i in the basis fringe spectrum. This error function is therefore the root-mean-

squared (RMS) energy difference between the targeted spectral constraint and the

E
1

Nh 1− v fi( ) 2 vc fi( ) 2−[ ]
i 0=

Nh 1−

∑⋅{ }

1
2

=
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spectra of the pattern at each iteration. The simulated annealing algorithm is illustrated

on page166.

With each iteration of the simulated annealing algorithm, the basis fringe sometimes is

left unchanged, sometimes moves toward a lower error, and occasionally moves

toward a higher error. To illustrate this process, page167 shows the basis fringe and its

spectrum as it progresses generally toward a more satisfactory solution to the con-

straints.

The combination of the iterative constraint method followed by simulated annealing

produced extremely precise basis fringes. The only disadvantage to simulated anneal-

ing is that it is slow. However, speed is not important to the precomputation of basis

fringes. The advantages of simulated annealing are many. Besides being capable of

producing superior basis fringes with tightly constrained spectra, this algorithm has

also been applied to the generation of fringes with other constraints. For example, sim-

ulated annealing was applied to the synthesis of fringes with highly quantized phase –

in some cases binary phase. Results were good, though the cooling schedule must be

more carefully engineered in these nonlinear constraint applications. For comparison,

in these cases the method of iterative constraints generally stagnated before a satisfac-

tory fringe was generated.
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This figure shows a schematic of the simulated annealing algorithm as implemented
for the synthesis of basis fringes. Essentially, the fringe pattern gradually moves
toward its targeted spectral constraints through a probabilistic decision to keep or
reject randomly made changes. The annealing precedes until the error function E
decreased to less than one quantization level per sample.
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This figure shows the process of simulated annealing applied to the synthesis of a
basis fringe. At left is the real part of the spatial pattern. At right is the energy of the
spectrum. The top line is the initial seed spatial pattern and its spectrum. Each line
represents a change that was made and kept. The total number of changes attempted
was 10000, and the number that were kept was 440. The bottom line is the annealed
basis fringe and its spectrum. This basis fringe was targeted to have a uniform spec-
trum of 1.0 in the range [ 0.0625, 0.1250] and no spectral energy outside this range.
The initial seed pattern was generated by the method of iterative constraints, which
left some deviations from the targeted spectrum (even after 100 iterations). Notice the
progression of the spectrum: it began with deviations in the form of dark regions within
the region where it was targeted to be uniform. These variations virtually melted away
as the annealing progressed. The error function decreased by roughly a factor of 10.
Total time for 10000 iterations was two minutes.
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3Computation of Synthetic Basis Fringes

This section describes two related methods for generating diffraction-specific basis

fringes: the iterative constraint method (discussed in the Background section) and a

novel simulated annealing approach. These numerical methods are necessitated by the

complicated set of spatial and spectral constraints on a given basis fringe. Spatially,

the basis fringe must represent a single hogel at a single location in the fringe pattern.

It must therefore have a finite width, and must possess homogeneous characteristics

across its width (i.e., a virtually constant amplitude). Spectrally, the basis fringe has

multiple often conflicting characteristics.

The spectrum of a hogel is divided into sampled increments of width∆f. Each basis

fringe is responsible for contributing energy in a particular portion of the spectrum and

in no others. This corresponds to diffracting light in a finite range of directions. If the

spectrum has a bandwidth of BW=0.5 cycles/sample and is divided into N regions of

width ∆f=0.5/N, then each basis fringe i must possess a spectrum that is non-zero in

the range [i∆f,(i+1)∆f] for i=[0,N-1]. The shape of the spectrum is a truncated sinc

function as required by the sampling theory to recover the continuous spectrum. Other

shapes – guassian, rectangular, triangular – were also used to determine their effects

on image quality. Each spectrum has a specific width.

An analytic solution to these many constraints is practically impossible. Attempts at

deriving closed-form analytical solutions leads to further complexity. More impor-

tantly, these analytic approach are mired in interference-based computation. They are

prone to the same problems associated with interference-based computation.

Several numerical methods can be applied to generate basis fringes. These numerical

methods produce a fringe that is synthesized from a set of constraints rather than from

interference-based analysis. Therefore, these numerically generated fringes are called



Lucente: Diffraction-Specific Fringe Computation For Electro-Holography

160

syntheticfringes. The numerical methods that worked best for this thesis were the

method of iterative constraints, and a novel application of simulated annealing. Both

of these algorithms were implemented on the Connection Machine Model 2 with 16K

data-parallel processors.

C.1 Method of Iterative Constraints

As discussed in Section2.7 “Iterative Hologram Computation Methods”on page34, a

typical iterative constraint algorithm involves using the forward and inverse Fourier

transforms and alternately applying spatial and spectral constraints. The figure on the

next page illustrates this algorithm schematically and in a step by step description.
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2. Transform into the spatial frequency domain.

3. Apply the (spectral) constraints on .

4. Inverse transform back to the spatial domain.

5. Apply the (spatial) constraints on .

6. Iterate starting at step 2.

where:

u(x) = computed spatial pattern u'(x) = modified spatial pattern

v(f) = spectral pattern v'(f) = modified spectral pattern
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As an example of the application of iterative constraints to the synthesis of basis

fringes, consider the case of a basis fringe that is to have spectral energy in a rectangu-

lar region ranging from 0.0 up to 0.5/8=0.0625 (cycles/sample). The spectral con-

straint on magnitude is that it be 1.0 within the region [0.0,0.0625] and 0.0 elsewhere.

The spatial constraint is that it have a uniform magnitude of 1.0. Phase is uncon-

strained in both the spatial and spectral domains. For a length of Nh = 256 samples,

computation begins with a randomly generated spatial phase and a uniform magnitude

of unity. After transforming into the spectral domain, the magnitude is forced to equal

the desired spectrum, namely 1.0 in the region [0.0,0.0625] and 0.0 elsewhere. After

inverse transforming into the spatial domain, the magnitude is forced to be uniform.

This cycle iterates. After 20 iterations, a reasonable solution to the constraints is gen-

erally obtained, after which very little changes. This example was run using an itera-

tive constraint algorithm implemented on the CM2. After 100 iterations, the resulting

real part of the spatial pattern is shown as the top basis fringe in the following figure:

At its right is its spectrum. Included are an additional seven basis fringes, each with a

spectrum that is rectangular with width∆f=0.5/8=0.0625, each non-zero in the range

[i∆f,(i+1)∆f] for i=[0,7], These basis fringes evenly divide the spectrum into eight

equal parts. Such a set of basis fringes was used to perform hogel-vector decoding for
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the parameters Nh = 256 samples and CR=32. For most cases, the basis fringes used

had a gaussian profile, with 1/e2 spectral full-width of∆f.

The advantage of the iterative constraint algorithm is that it can generate synthetic

basis fringes using a wide variety of constraints. It is fast, though speed is not impor-

tant in precomputation of basis fringes since these basis fringes need only to be com-

puted once and then integrated into diffraction-specific computation algorithms. The

more important issue is one of closeness to the desired constraints. Notice that in the

example of eight basis fringes shown in the previous figure, the spectra are not perfect

rectangles. The ripples and drop-outs in basis fringe spectra lead to speckle-like arti-

facts in the holographic images. The disadvantage is that this method sometimes stag-

nates at local minima in the error function48. The error function is the difference

between the desired spectral characteristics and those in the spectrum of the calculated

pattern. One solution was to introduce a small amount of noise into the spatial pattern

with each iteration. The amount of noise decreased with each iteration. Still, the syn-

thesized basis fringes were still lacking in spectral quality. The solution was to imple-

ment a simulated annealing algorithm.

C.2 Simulated Annealing

Simulated annealing47 is a numerical optimization algorithm used for a variety of

applications. Just as physical annealing (the process of slowly cooling a liquid into a

solid) seeks to decrease the global energy state of a system, simulated annealing seeks

to minimize the error between certain qualities of a numerical system and their tar-

geted constraints. To further the analogy, simulated annealing sometimes increases

error based on a probability function that resembles Boltzmann’s probability distribu-

tion:

(C3)Prob E( ) exp
E−

kT
( )∼
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which relates the probability of a system being in a particular energy stateE given that

its thermal energy iskT. As a physical system cools, it generally moves toward a lower

energy state. However, there is always a finite probability that it will move (tempo-

rarily) to a higher energy state. In simulated annealing, a random test change is made

to the numerical system. Let∆E be the difference between the system “error” with the

test change and the system without it. If the resulting change in error∆E is negative,

then the change is allowed. If∆E is positive, it may be kept or rejected, depending

probabilistically on EquationC3. The system always moves toward a potential

decrease in error, but does sometimes move toward a potentially higher error state.

This occasional addition of error prevents the system from stagnating at a local mini-

mum (as does the iterative constraints algorithm). The parameterkT must be chosen to

allow for occasional increase in error, and must be slowly cooled (reduced) as the sys-

tem converges to its targeted constraints.

A simulated annealing algorithm was implemented for this thesis on the CM2. The

process of randomly altering one sample of a basis function is slow. It is important to

begin the annealing with a good guess. Therefore, the basis fringe generated using the

method of iterative constraints was used as the initial guess (seed) for the simulated

annealing algorithm. The first step in the annealing algorithm is randomly to select a

sample of the spatial pattern and to change it, within the spatial constraints. After a test

change has been made, the spectral energy is calculated by applying a Fourier trans-

form. The error function after a given iteration was calculated as

(C4)

wherevc(fi) is the targeted spectral magnitude constraint andfi is thef location of sam-

ple i in the basis fringe spectrum. This error function is therefore the root-mean-

squared (RMS) energy difference between the targeted spectral constraint and the

E
1

Nh 1− v fi( ) 2 vc fi( ) 2−[ ]
i 0=

Nh 1−

∑⋅{ }

1
2

=



Appendix C    Computation of Synthetic Basis Fringes

165

spectra of the pattern at each iteration. The simulated annealing algorithm is illustrated

on page166.

With each iteration of the simulated annealing algorithm, the basis fringe sometimes is

left unchanged, sometimes moves toward a lower error, and occasionally moves

toward a higher error. To illustrate this process, page167 shows the basis fringe and its

spectrum as it progresses generally toward a more satisfactory solution to the con-

straints.

The combination of the iterative constraint method followed by simulated annealing

produced extremely precise basis fringes. The only disadvantage to simulated anneal-

ing is that it is slow. However, speed is not important to the precomputation of basis

fringes. The advantages of simulated annealing are many. Besides being capable of

producing superior basis fringes with tightly constrained spectra, this algorithm has

also been applied to the generation of fringes with other constraints. For example, sim-

ulated annealing was applied to the synthesis of fringes with highly quantized phase –

in some cases binary phase. Results were good, though the cooling schedule must be

more carefully engineered in these nonlinear constraint applications. For comparison,

in these cases the method of iterative constraints generally stagnated before a satisfac-

tory fringe was generated.
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This figure shows a schematic of the simulated annealing algorithm as implemented
for the synthesis of basis fringes. Essentially, the fringe pattern gradually moves
toward its targeted spectral constraints through a probabilistic decision to keep or
reject randomly made changes. The annealing precedes until the error function E
decreased to less than one quantization level per sample.
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This figure shows the process of simulated annealing applied to the synthesis of a
basis fringe. At left is the real part of the spatial pattern. At right is the energy of the
spectrum. The top line is the initial seed spatial pattern and its spectrum. Each line
represents a change that was made and kept. The total number of changes attempted
was 10000, and the number that were kept was 440. The bottom line is the annealed
basis fringe and its spectrum. This basis fringe was targeted to have a uniform spec-
trum of 1.0 in the range [ 0.0625, 0.1250] and no spectral energy outside this range.
The initial seed pattern was generated by the method of iterative constraints, which
left some deviations from the targeted spectrum (even after 100 iterations). Notice the
progression of the spectrum: it began with deviations in the form of dark regions within
the region where it was targeted to be uniform. These variations virtually melted away
as the annealing progressed. The error function decreased by roughly a factor of 10.
Total time for 10000 iterations was two minutes.
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3Computation of Synthetic Basis Fringes

This section describes two related methods for generating diffraction-specific basis

fringes: the iterative constraint method (discussed in the Background section) and a

novel simulated annealing approach. These numerical methods are necessitated by the

complicated set of spatial and spectral constraints on a given basis fringe. Spatially,

the basis fringe must represent a single hogel at a single location in the fringe pattern.

It must therefore have a finite width, and must possess homogeneous characteristics

across its width (i.e., a virtually constant amplitude). Spectrally, the basis fringe has

multiple often conflicting characteristics.

The spectrum of a hogel is divided into sampled increments of width∆f. Each basis

fringe is responsible for contributing energy in a particular portion of the spectrum and

in no others. This corresponds to diffracting light in a finite range of directions. If the

spectrum has a bandwidth of BW=0.5 cycles/sample and is divided into N regions of

width ∆f=0.5/N, then each basis fringe i must possess a spectrum that is non-zero in

the range [i∆f,(i+1)∆f] for i=[0,N-1]. The shape of the spectrum is a truncated sinc

function as required by the sampling theory to recover the continuous spectrum. Other

shapes – guassian, rectangular, triangular – were also used to determine their effects

on image quality. Each spectrum has a specific width.

An analytic solution to these many constraints is practically impossible. Attempts at

deriving closed-form analytical solutions leads to further complexity. More impor-

tantly, these analytic approach are mired in interference-based computation. They are

prone to the same problems associated with interference-based computation.

Several numerical methods can be applied to generate basis fringes. These numerical

methods produce a fringe that is synthesized from a set of constraints rather than from

interference-based analysis. Therefore, these numerically generated fringes are called
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syntheticfringes. The numerical methods that worked best for this thesis were the

method of iterative constraints, and a novel application of simulated annealing. Both

of these algorithms were implemented on the Connection Machine Model 2 with 16K

data-parallel processors.

C.1 Method of Iterative Constraints

As discussed in Section2.7 “Iterative Hologram Computation Methods”on page34, a

typical iterative constraint algorithm involves using the forward and inverse Fourier

transforms and alternately applying spatial and spectral constraints. The figure on the

next page illustrates this algorithm schematically and in a step by step description.
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where:
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As an example of the application of iterative constraints to the synthesis of basis

fringes, consider the case of a basis fringe that is to have spectral energy in a rectangu-

lar region ranging from 0.0 up to 0.5/8=0.0625 (cycles/sample). The spectral con-

straint on magnitude is that it be 1.0 within the region [0.0,0.0625] and 0.0 elsewhere.

The spatial constraint is that it have a uniform magnitude of 1.0. Phase is uncon-

strained in both the spatial and spectral domains. For a length of Nh = 256 samples,

computation begins with a randomly generated spatial phase and a uniform magnitude

of unity. After transforming into the spectral domain, the magnitude is forced to equal

the desired spectrum, namely 1.0 in the region [0.0,0.0625] and 0.0 elsewhere. After

inverse transforming into the spatial domain, the magnitude is forced to be uniform.

This cycle iterates. After 20 iterations, a reasonable solution to the constraints is gen-

erally obtained, after which very little changes. This example was run using an itera-

tive constraint algorithm implemented on the CM2. After 100 iterations, the resulting

real part of the spatial pattern is shown as the top basis fringe in the following figure:

At its right is its spectrum. Included are an additional seven basis fringes, each with a

spectrum that is rectangular with width∆f=0.5/8=0.0625, each non-zero in the range

[i∆f,(i+1)∆f] for i=[0,7], These basis fringes evenly divide the spectrum into eight

equal parts. Such a set of basis fringes was used to perform hogel-vector decoding for
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the parameters Nh = 256 samples and CR=32. For most cases, the basis fringes used

had a gaussian profile, with 1/e2 spectral full-width of∆f.

The advantage of the iterative constraint algorithm is that it can generate synthetic

basis fringes using a wide variety of constraints. It is fast, though speed is not impor-

tant in precomputation of basis fringes since these basis fringes need only to be com-

puted once and then integrated into diffraction-specific computation algorithms. The

more important issue is one of closeness to the desired constraints. Notice that in the

example of eight basis fringes shown in the previous figure, the spectra are not perfect

rectangles. The ripples and drop-outs in basis fringe spectra lead to speckle-like arti-

facts in the holographic images. The disadvantage is that this method sometimes stag-

nates at local minima in the error function48. The error function is the difference

between the desired spectral characteristics and those in the spectrum of the calculated

pattern. One solution was to introduce a small amount of noise into the spatial pattern

with each iteration. The amount of noise decreased with each iteration. Still, the syn-

thesized basis fringes were still lacking in spectral quality. The solution was to imple-

ment a simulated annealing algorithm.

C.2 Simulated Annealing

Simulated annealing47 is a numerical optimization algorithm used for a variety of

applications. Just as physical annealing (the process of slowly cooling a liquid into a

solid) seeks to decrease the global energy state of a system, simulated annealing seeks

to minimize the error between certain qualities of a numerical system and their tar-

geted constraints. To further the analogy, simulated annealing sometimes increases

error based on a probability function that resembles Boltzmann’s probability distribu-

tion:

(C3)Prob E( ) exp
E−

kT
( )∼
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which relates the probability of a system being in a particular energy stateE given that

its thermal energy iskT. As a physical system cools, it generally moves toward a lower

energy state. However, there is always a finite probability that it will move (tempo-

rarily) to a higher energy state. In simulated annealing, a random test change is made

to the numerical system. Let∆E be the difference between the system “error” with the

test change and the system without it. If the resulting change in error∆E is negative,

then the change is allowed. If∆E is positive, it may be kept or rejected, depending

probabilistically on EquationC3. The system always moves toward a potential

decrease in error, but does sometimes move toward a potentially higher error state.

This occasional addition of error prevents the system from stagnating at a local mini-

mum (as does the iterative constraints algorithm). The parameterkT must be chosen to

allow for occasional increase in error, and must be slowly cooled (reduced) as the sys-

tem converges to its targeted constraints.

A simulated annealing algorithm was implemented for this thesis on the CM2. The

process of randomly altering one sample of a basis function is slow. It is important to

begin the annealing with a good guess. Therefore, the basis fringe generated using the

method of iterative constraints was used as the initial guess (seed) for the simulated

annealing algorithm. The first step in the annealing algorithm is randomly to select a

sample of the spatial pattern and to change it, within the spatial constraints. After a test

change has been made, the spectral energy is calculated by applying a Fourier trans-

form. The error function after a given iteration was calculated as

(C4)

wherevc(fi) is the targeted spectral magnitude constraint andfi is thef location of sam-

ple i in the basis fringe spectrum. This error function is therefore the root-mean-

squared (RMS) energy difference between the targeted spectral constraint and the

E
1

Nh 1− v fi( ) 2 vc fi( ) 2−[ ]
i 0=

Nh 1−

∑⋅{ }

1
2

=
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spectra of the pattern at each iteration. The simulated annealing algorithm is illustrated

on page166.

With each iteration of the simulated annealing algorithm, the basis fringe sometimes is

left unchanged, sometimes moves toward a lower error, and occasionally moves

toward a higher error. To illustrate this process, page167 shows the basis fringe and its

spectrum as it progresses generally toward a more satisfactory solution to the con-

straints.

The combination of the iterative constraint method followed by simulated annealing

produced extremely precise basis fringes. The only disadvantage to simulated anneal-

ing is that it is slow. However, speed is not important to the precomputation of basis

fringes. The advantages of simulated annealing are many. Besides being capable of

producing superior basis fringes with tightly constrained spectra, this algorithm has

also been applied to the generation of fringes with other constraints. For example, sim-

ulated annealing was applied to the synthesis of fringes with highly quantized phase –

in some cases binary phase. Results were good, though the cooling schedule must be

more carefully engineered in these nonlinear constraint applications. For comparison,

in these cases the method of iterative constraints generally stagnated before a satisfac-

tory fringe was generated.
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This figure shows a schematic of the simulated annealing algorithm as implemented
for the synthesis of basis fringes. Essentially, the fringe pattern gradually moves
toward its targeted spectral constraints through a probabilistic decision to keep or
reject randomly made changes. The annealing precedes until the error function E
decreased to less than one quantization level per sample.

The Simulated Annealing Algorithm

Spatial
Constraints
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This figure shows the process of simulated annealing applied to the synthesis of a
basis fringe. At left is the real part of the spatial pattern. At right is the energy of the
spectrum. The top line is the initial seed spatial pattern and its spectrum. Each line
represents a change that was made and kept. The total number of changes attempted
was 10000, and the number that were kept was 440. The bottom line is the annealed
basis fringe and its spectrum. This basis fringe was targeted to have a uniform spec-
trum of 1.0 in the range [ 0.0625, 0.1250] and no spectral energy outside this range.
The initial seed pattern was generated by the method of iterative constraints, which
left some deviations from the targeted spectrum (even after 100 iterations). Notice the
progression of the spectrum: it began with deviations in the form of dark regions within
the region where it was targeted to be uniform. These variations virtually melted away
as the annealing progressed. The error function decreased by roughly a factor of 10.
Total time for 10000 iterations was two minutes.
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Appendix C

3Computation of Synthetic Basis Fringes

This section describes two related methods for generating diffraction-specific basis

fringes: the iterative constraint method (discussed in the Background section) and a

novel simulated annealing approach. These numerical methods are necessitated by the

complicated set of spatial and spectral constraints on a given basis fringe. Spatially,

the basis fringe must represent a single hogel at a single location in the fringe pattern.

It must therefore have a finite width, and must possess homogeneous characteristics

across its width (i.e., a virtually constant amplitude). Spectrally, the basis fringe has

multiple often conflicting characteristics.

The spectrum of a hogel is divided into sampled increments of width∆f. Each basis

fringe is responsible for contributing energy in a particular portion of the spectrum and

in no others. This corresponds to diffracting light in a finite range of directions. If the

spectrum has a bandwidth of BW=0.5 cycles/sample and is divided into N regions of

width ∆f=0.5/N, then each basis fringe i must possess a spectrum that is non-zero in

the range [i∆f,(i+1)∆f] for i=[0,N-1]. The shape of the spectrum is a truncated sinc

function as required by the sampling theory to recover the continuous spectrum. Other

shapes – guassian, rectangular, triangular – were also used to determine their effects

on image quality. Each spectrum has a specific width.

An analytic solution to these many constraints is practically impossible. Attempts at

deriving closed-form analytical solutions leads to further complexity. More impor-

tantly, these analytic approach are mired in interference-based computation. They are

prone to the same problems associated with interference-based computation.

Several numerical methods can be applied to generate basis fringes. These numerical

methods produce a fringe that is synthesized from a set of constraints rather than from

interference-based analysis. Therefore, these numerically generated fringes are called
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syntheticfringes. The numerical methods that worked best for this thesis were the

method of iterative constraints, and a novel application of simulated annealing. Both

of these algorithms were implemented on the Connection Machine Model 2 with 16K

data-parallel processors.

C.1 Method of Iterative Constraints

As discussed in Section2.7 “Iterative Hologram Computation Methods”on page34, a

typical iterative constraint algorithm involves using the forward and inverse Fourier

transforms and alternately applying spatial and spectral constraints. The figure on the

next page illustrates this algorithm schematically and in a step by step description.
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2. Transform into the spatial frequency domain.

3. Apply the (spectral) constraints on .

4. Inverse transform back to the spatial domain.
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6. Iterate starting at step 2.

where:
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Algorithm for Method of Iterative Constraints
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As an example of the application of iterative constraints to the synthesis of basis

fringes, consider the case of a basis fringe that is to have spectral energy in a rectangu-

lar region ranging from 0.0 up to 0.5/8=0.0625 (cycles/sample). The spectral con-

straint on magnitude is that it be 1.0 within the region [0.0,0.0625] and 0.0 elsewhere.

The spatial constraint is that it have a uniform magnitude of 1.0. Phase is uncon-

strained in both the spatial and spectral domains. For a length of Nh = 256 samples,

computation begins with a randomly generated spatial phase and a uniform magnitude

of unity. After transforming into the spectral domain, the magnitude is forced to equal

the desired spectrum, namely 1.0 in the region [0.0,0.0625] and 0.0 elsewhere. After

inverse transforming into the spatial domain, the magnitude is forced to be uniform.

This cycle iterates. After 20 iterations, a reasonable solution to the constraints is gen-

erally obtained, after which very little changes. This example was run using an itera-

tive constraint algorithm implemented on the CM2. After 100 iterations, the resulting

real part of the spatial pattern is shown as the top basis fringe in the following figure:

At its right is its spectrum. Included are an additional seven basis fringes, each with a

spectrum that is rectangular with width∆f=0.5/8=0.0625, each non-zero in the range

[i∆f,(i+1)∆f] for i=[0,7], These basis fringes evenly divide the spectrum into eight

equal parts. Such a set of basis fringes was used to perform hogel-vector decoding for

0.0 0.5fx0 255

Basis Fringes: Re{u(x)} Spectra: |v(f)|2

(cycles/sample)(sample)

Eight Basis Fringes
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the parameters Nh = 256 samples and CR=32. For most cases, the basis fringes used

had a gaussian profile, with 1/e2 spectral full-width of∆f.

The advantage of the iterative constraint algorithm is that it can generate synthetic

basis fringes using a wide variety of constraints. It is fast, though speed is not impor-

tant in precomputation of basis fringes since these basis fringes need only to be com-

puted once and then integrated into diffraction-specific computation algorithms. The

more important issue is one of closeness to the desired constraints. Notice that in the

example of eight basis fringes shown in the previous figure, the spectra are not perfect

rectangles. The ripples and drop-outs in basis fringe spectra lead to speckle-like arti-

facts in the holographic images. The disadvantage is that this method sometimes stag-

nates at local minima in the error function48. The error function is the difference

between the desired spectral characteristics and those in the spectrum of the calculated

pattern. One solution was to introduce a small amount of noise into the spatial pattern

with each iteration. The amount of noise decreased with each iteration. Still, the syn-

thesized basis fringes were still lacking in spectral quality. The solution was to imple-

ment a simulated annealing algorithm.

C.2 Simulated Annealing

Simulated annealing47 is a numerical optimization algorithm used for a variety of

applications. Just as physical annealing (the process of slowly cooling a liquid into a

solid) seeks to decrease the global energy state of a system, simulated annealing seeks

to minimize the error between certain qualities of a numerical system and their tar-

geted constraints. To further the analogy, simulated annealing sometimes increases

error based on a probability function that resembles Boltzmann’s probability distribu-

tion:

(C3)Prob E( ) exp
E−

kT
( )∼
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which relates the probability of a system being in a particular energy stateE given that

its thermal energy iskT. As a physical system cools, it generally moves toward a lower

energy state. However, there is always a finite probability that it will move (tempo-

rarily) to a higher energy state. In simulated annealing, a random test change is made

to the numerical system. Let∆E be the difference between the system “error” with the

test change and the system without it. If the resulting change in error∆E is negative,

then the change is allowed. If∆E is positive, it may be kept or rejected, depending

probabilistically on EquationC3. The system always moves toward a potential

decrease in error, but does sometimes move toward a potentially higher error state.

This occasional addition of error prevents the system from stagnating at a local mini-

mum (as does the iterative constraints algorithm). The parameterkT must be chosen to

allow for occasional increase in error, and must be slowly cooled (reduced) as the sys-

tem converges to its targeted constraints.

A simulated annealing algorithm was implemented for this thesis on the CM2. The

process of randomly altering one sample of a basis function is slow. It is important to

begin the annealing with a good guess. Therefore, the basis fringe generated using the

method of iterative constraints was used as the initial guess (seed) for the simulated

annealing algorithm. The first step in the annealing algorithm is randomly to select a

sample of the spatial pattern and to change it, within the spatial constraints. After a test

change has been made, the spectral energy is calculated by applying a Fourier trans-

form. The error function after a given iteration was calculated as

(C4)

wherevc(fi) is the targeted spectral magnitude constraint andfi is thef location of sam-

ple i in the basis fringe spectrum. This error function is therefore the root-mean-

squared (RMS) energy difference between the targeted spectral constraint and the

E
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spectra of the pattern at each iteration. The simulated annealing algorithm is illustrated

on page166.

With each iteration of the simulated annealing algorithm, the basis fringe sometimes is

left unchanged, sometimes moves toward a lower error, and occasionally moves

toward a higher error. To illustrate this process, page167 shows the basis fringe and its

spectrum as it progresses generally toward a more satisfactory solution to the con-

straints.

The combination of the iterative constraint method followed by simulated annealing

produced extremely precise basis fringes. The only disadvantage to simulated anneal-

ing is that it is slow. However, speed is not important to the precomputation of basis

fringes. The advantages of simulated annealing are many. Besides being capable of

producing superior basis fringes with tightly constrained spectra, this algorithm has

also been applied to the generation of fringes with other constraints. For example, sim-

ulated annealing was applied to the synthesis of fringes with highly quantized phase –

in some cases binary phase. Results were good, though the cooling schedule must be

more carefully engineered in these nonlinear constraint applications. For comparison,

in these cases the method of iterative constraints generally stagnated before a satisfac-

tory fringe was generated.
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This figure shows a schematic of the simulated annealing algorithm as implemented
for the synthesis of basis fringes. Essentially, the fringe pattern gradually moves
toward its targeted spectral constraints through a probabilistic decision to keep or
reject randomly made changes. The annealing precedes until the error function E
decreased to less than one quantization level per sample.
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This figure shows the process of simulated annealing applied to the synthesis of a
basis fringe. At left is the real part of the spatial pattern. At right is the energy of the
spectrum. The top line is the initial seed spatial pattern and its spectrum. Each line
represents a change that was made and kept. The total number of changes attempted
was 10000, and the number that were kept was 440. The bottom line is the annealed
basis fringe and its spectrum. This basis fringe was targeted to have a uniform spec-
trum of 1.0 in the range [ 0.0625, 0.1250] and no spectral energy outside this range.
The initial seed pattern was generated by the method of iterative constraints, which
left some deviations from the targeted spectrum (even after 100 iterations). Notice the
progression of the spectrum: it began with deviations in the form of dark regions within
the region where it was targeted to be uniform. These variations virtually melted away
as the annealing progressed. The error function decreased by roughly a factor of 10.
Total time for 10000 iterations was two minutes.
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